When I originally wrote the expanded trig tests, the tests were very thorough. Given an angle, it would (say), test that angle in the default trig base, and then in radians, degrees, gradians, and “circles”. For three different ways to call it for Num, then for Rat, Complex, and Int. This led to a **lot** of trig tests: sin/asin had 1782 combined tests, for instance. But I still needed to add more tests! So I’ve known for a while I was going to have to reduce the number of tests. I just wasn’t sure how.

I played around with several different methods for reducing the count. I settled early on on the notion that the full tests would still be performed for the method forms of Num and Complex. That way we have confidence the underlying algorithms do work. My current effort is to get the code to automatically generate one test for each form for each type. So for instance

# Rat tests
is_approx((-3.9269908).Rat.sin, 0.7071067, "Rat.sin - -3.9269908 default");
is_approx((-0.625).Rat.sin(Circles), 0.7071067, "Rat.sin(Circles) - -0.625 default");
is_approx((-3.9269908).Rat.sin(:base(Radians)), 0.7071067, "Rat.sin(:base(Radians)) - -3.9269908 default");
is_approx(sin((-3.9269908).Rat), 0.7071067, "sin(Rat) - -3.9269908 default");
is_approx(sin((-225).Rat, Degrees), 0.7071067, "sin(Rat) - -225 default");
is_approx(sin(:x((-3.9269908).Rat)), 0.7071067, "sin(:x(Rat)) - -3.9269908 default");
is_approx(sin(:x((-250).Rat), :base(Gradians)), 0.7071067, "sin(:x(Rat), :base) - -250 default");

Except this is wrong: I want to test a different angle for each form. I need to do a bit of refactoring to make that possible, but I think I should be able to get it going today.

One trick I am using here might qualify as a new Perl 6 idiom. I have a list of angles to test, and a list of trig bases. I want to come up with lots of combinations. My solution has been to do something like this:

my $base_list = (<Radians Degrees Gradians Circles> xx *).flat;

That gets you an infinite list that just repeats those four strings over and over again — you just `.shift`

them off as needed. You could do the same thing with array indexing and modular arithmetic, but IMO this is more elegant. (Though now that I think about it, with the array I believe you could say something like `@array[$count++ % *]`

and it would work.)

Thanks to The Perl Foundation and Ian Hague for supporting this work.

### Like this:

Like Loading...

*Related*

Tags: Numeric, Rakudo, Trig

This entry was posted on June 23, 2010 at 11:43 am and is filed under Uncategorized. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

## Leave a Reply